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Abstract. The level-1 irreducible highest-weight modules of the quantum affine algebra
Uq(ŝln) are decomposed into irreducible components with respect to the level-0U ′q (ŝln)-action
previously defined in [13]. The components of the decomposition are found to be the so-called
tame representations ofU ′q (ŝln) parametrized by the skew Young diagrams of the border-strip
type. This result verifies a recent conjecture due to Kirillovet al.

1. Introduction

It is well known that quantum groups often appear as non-Abelian symmetries of one-
dimensional exactly solvable models of statistical mechanics. Existence of such symmetries
has important implications for physics described by this type of model as well as for the
actual choice of a procedure used to obtain exact solution.

An example, much studied recently is provided by the long-range interactingsln-
invariant Haldane–Shastry spin chains. In this case the complete non-Abelian symmetry
is Y (sln), the Yangian ofsln. After taking an appropriate continuum limit, the space of
states of ansln-invariant Haldane–Shastry spin chain is identified with the sum of level-1
irreducible highest weight modules of the affine Lie algebraŝln. The Yangian symmetry
present in the finite-size model gives rise toY (sln)-action on each of the level-1 highest
weight modules [7]. Explicit expressions for the generators of theY (sln)-action on a highest
weight module of̂sln with n > 3 were obtained in [14].

An important problem is to obtain irreducible decomposition of a highest weightŝln-
module relative to this Yangian action. Each irreducible component gives an eigenspace
of the continuum limit of the Hamiltonian. Moreover, the decomposition may be used to
obtain novel character formulae for the highest weight module.

The Yangian decomposition in thêsl2 case was accomplished in [2]. To our knowledge,
until now no complete result on the Yangian decomposition forn > 3 has been
published. However, recently Kirillovet al [10] proposed a remarkable conjecture which
purports to describe the combinatorial structure of this decomposition, i.e.sln-characters
and equivalence classes (up to certain exteriorY (sln)-automorphisms) of all irreducible
components. The distinctive feature of the conjecture is the prediction that all the irreducible
components are in the class of the so-calledtame Y (sln)-modules parametrized by skew
Young diagrams of the border-strip type.
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The main result of this paper is a proof of this conjecture. Actually we carry out the
proof in a more general,q-deformed, set-up. Instead of decomposing a level-1 highest-
weight module of̂sln with respect to the YangianY (sln), we decompose a level-1 highest-
weight module ofUq(ŝln) with respect to the level-0 action ofU ′q(ŝln). The latter action
is a q-deformation of the Yangian. At generic values of the deformation parameterq the
decomposition is combinatorially the same as for the Yangian case. We also remark that
for n = 2 the decomposition we obtain coincides with the previous result of [8]. For details
see section 4.3.

Let us now explain features of the method we use to prove the conjecture of [10].
The central role in our approach to the problem of the level-0U ′q(ŝln) decomposition is

played by theq-deformed Fock-space module ofUq(ŝln) taken in the semi-infiniteq-wedge
realization due to Kashiwaraet al [9].

In the papers [19] and [13] it was shown that theq-deformed Fock space module of
the quantum affine algebraUq(ŝln) admits an action of a new remarkable object - the
so-called quantum toroidal algebra introduced in [5] and [18] as aq-deformation of the
universal central extension of thesln-valued double-loop Lie algebra. The action of the
quantum toroidal algebra on theq-Fock space depends on two parameters: the deformation
parameterq and an extra parameterp, when values of these parameters are taken to be
generic complex numbers, theq-Fock space is known to be irreducible with respect to this
action.

The quantum toroidal algebra has two subalgebras,U ′q(ŝln)
(1) and U ′q(ŝln)

(2), both

isomorphic toU ′q(ŝln). Accordingly, theq-Fock space admits twoU ′q(ŝln)-actions.
The first of these actions has level 1, and coincides with the action originally introduced

by Hayashi in [6]. The irreducible decomposition of theq-Fock space with respect to this
action was given in [9] by using the semi-infiniteq-wedge construction due to [15].

The second of theU ′q(ŝln) actions has level 0, the irreducible decomposition of the
q-Fock space with respect to this action was constructed in [16] at generic values of the
parametersq andp.

Kashiwaraet al [9] have shown, that the level-1 action ofU ′q(ŝln) on theq-Fock space
is centralized by the action of the Heisenberg algebra. In the paper [13] it was proven
that the proper ideal of theq-Fock space generated by the negative-frequency part of the
Heisenberg algebra is invariant under the action of the quantum toroidal algebra provided
the value of the parameterp in the latter is set to be equal to 1. The quotient of theq-Fock
space by this ideal is isomorphic to one of the irreducible level-1 highest weight modules of
Uq(ŝln). As a consequence, each of these modules admits an action of the quantum toroidal
algebra.

The corresponding action of the subalgebraU ′q(ŝln)
(1) is irreducible, it is just the standard

level-1 action on the highest-weight irreducible module ofUq(ŝln). On the other hand, the
action of the subalgebraU ′q(ŝln)

(2) has level 0 and is completely reducible. The construction

of the irreducible decomposition of the level-1Uq(ŝln)-modules relative to the level-0 action
is the problem which we address in this paper.

2. The actions of the quantum affine algebraU ′q(ŝln)

2.1. Definition of the quantum affine algebraU ′q(ŝln)

Definition 1. The quantum affine algebraU ′q(ŝln) is the unital associative algebra overC
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with generatorsEi , Fi , K
±1
i (i ∈ I := {0, 1, . . . , n−1}) and the following defining relations:

KiK
−1
i = 1= K−1

i Ki (2.1)

KiKj = KjKi (2.2)

KiEjK
−1
i = qaij Ej (2.3)

KiFjK
−1
i = q−aij Fj (2.4)

[Ei, Fj ] = δij Ki −K
−1
i

q − q−1
(2.5)

1−aij∑
r=0

(−1)r
[

1− aij
r

]
q

(Ei)
rEj (Ei)

1−aij−r = 0 i 6= j (2.6)

1−aij∑
r=0

(−1)r
[

1− aij
r

]
q

(Fi)
rFj (Fi)

1−aij−r = 0 i 6= j (2.7)

where

[n]q := qn − q−n
q − q−1

[
n

r

]
q

:= [n]q [n− 1]q . . . [n− r + 1]q
[r]q [r − 1]q . . . [1]q

(2.8)

aij =


2 (i = j)
−1 (|i − j | = 1, (i, j) = (1, n), (n,1)) n > 3

0 (otherwise)

(2.9)

aij =
{

2(i = j) n = 2

−2(i 6= j) n = 2.
(2.10)

The coproduct1 is given by

1(Ei) = Ei ⊗Ki + 1⊗ Ei (2.11)

1(Fi) = Fi ⊗ 1+K−1
i ⊗ Fi (2.12)

1(Ki) = Ki ⊗Ki. (2.13)

We putc′ := K0K1 . . . Kn−1 in U ′q(ŝln), thenc′ is the central inU ′q(ŝln).

2.2. q-wedge product and semi-infinite q-wedge product

The affine Hecke algebra of typeglN, ĤN(q) is a unital associative algebra overC[q±1]
with generatorsT ±1

i , Y±1
j , i = 1, 2, . . . , N − 1, j = 1, 2, . . . , N and relations

TiT
−1
i = T −1

i Ti = 1 (Ti + 1)(Ti − q2) = 0

TiTi+1Ti = Ti+1TiTi+1

TiTj = TjTi if |j − i| > 1

YiYj = YjYi T −1
i YiT

−1
i = q−2Yi+1

YjTi = TiYj if j 6= i, i + 1.

The subalgebraHN(q) generated byT ±1
i is isomorphic to the Hecke algebra of typeglN .

Let p ∈ C× and consider the following operators in End(C[z±1
1 , . . . , z±1

N ])

gi,j = q−1zi − qzj
zi − zj (Ki,j − 1)+ q 16 i 6= j 6 N

Y
(N)
i = g−1

i,i+1Ki,i+1 . . . g
−1
i,NKi,Np

DiK1,ig1,i . . . Ki−1,igi−1,i i = 1, 2, . . . , N
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whereKi,j acts onC[z±1
1 , . . . , z±1

N ] by permuting variableszi, zj andpDi is the difference
operator

pDif (z1, . . . , zi, . . . , zN) = f (z1, . . . , pzi, . . . , zN) f ∈ C[z±1
1 , . . . , z±1

N ].

Then the assignment

Ti 7→
c

T i = −qg−1
i,i+1 Yi 7→ q1−NY (N)i (2.14)

defines a right action of̂HN(q) on C[z±1
1 , . . . , z±1

N ].
The commuting difference operatorsY (N)1 , . . . , Y

(N)
N are called Cherednik’s operators.

Moreover, the assignment

Ti 7→
c

T i = −qg−1
i,i+1 Yi 7→ z−1

i (multiplication) (2.15)

defines another right action of̂HN(q) on C[z±1
1 , . . . , z±1

N ].

Remark.The actions of−qg−1
i,i+1, q

1−NY (N)i , z−1
i are related to the toroidal Hecke algebra

[18] or the double affine Hecke algebra [4].

Let V = Cn, with basis{v1, . . . , vn}. Then⊗NV admits a leftHN(q)-action given by

Ti 7→
s

T i = 1⊗
i−1 ⊗

s

T ⊗ 1⊗
N−i−1

where
s

T ∈ End(⊗2V ) (2.16)

and

s

T (vε1 ⊗ vε2) =


q2vε1 ⊗ vε2 if ε1 = ε2

qvε2 ⊗ vε1 if ε1 < ε2

qvε2 ⊗ vε1 + (q2− 1)vε1 ⊗ vε2 if ε1 > ε2.

(2.17)

Let V (z) = C[z±1] ⊗ V , with basis{zm ⊗ vε}, m ∈ Z, ε ∈ {1, 2, . . . , n}. Often it will
be convenient to setk = ε − nm anduk = zm ⊗ vε . Then{uk}, k ∈ Z is a basis ofV (z).
In what follows we will writezmvε as a short-hand forzm⊗ vε , and use both notations:uk
andzmvε switching between them according to convenience. The two actions of the Hecke

algebra are naturally extended on the tensor productC[z±1
1 , . . . , z±1

N ] ⊗ (⊗NV ) so that
c

T i

acts trivially on⊗NV and
s

T i acts trivially onC[z±1
1 , . . . , z±1

N ]. The vector space⊗NV (z)
is identified withC[z±1

1 , . . . , z±1
N ] ⊗ (⊗NV ) and theq-wedge product [9] is defined as the

following quotient space:

∧NV (z) = ⊗NV (z)
/ N−1∑

i=1

Ker(
c

T i + q2(
s

T i)
−1). (2.18)

Let 3 : ⊗NV (z)→ ∧NV (z) be the quotient map specified by (2.18). The image of a
pure tensoruk1 ⊗ uk2 ⊗ · · · ⊗ ukN under this map is called a wedge and is denoted by

uk1 ∧ uk2 ∧ . . . ∧ ukN := 3(uk1 ⊗ uk2 ⊗ · · · ⊗ ukN ). (2.19)

A wedge is normally ordered ifk1 > k2 > · · · > kN . In [9] it is proven that normally
ordered wedges form a basis in∧NV (z).

Let us now define the semi-infiniteq-wedge product∧∞2 V (z) and for any integerM its
subspaceFM , following [9].



Level-1 irreducible highest-weight modules 1471

Let⊗∞2 V (z) be the space spanned by the vectorsuk1⊗uk2⊗ . . . , (ki+1 = ki−1, i � 1).
We define the space∧∞2 V (z) as the quotient of⊗∞2 V (z):

∧∞2 V (z) := ⊗∞2 V (z)
/ ∞∑

i=1

Ker(
c

T i + q2(
s

T i)
−1). (2.20)

Let 3 : ⊗∞2 V (z)→ ∧∞2 V (z) be the quotient map specified by (2.20). The image of a pure
tensoruk1 ⊗ uk2 ⊗ . . . under this map is called a semi-infinite wedge and is denoted by

uk1 ∧ uk2 ∧ . . . := 3(uk1 ⊗ uk2 ⊗ · · ·). (2.21)

A semi-infinite wedge is normally ordered ifk1 > k2 > · · · andki+1 = ki − 1(i � 1). In
[9] it is proven that normally ordered semi-infinite wedges form a basis in∧∞2 V (z).

Let UM be the subspace of⊗∞2 V (z) spanned by the vectorsuk1 ⊗ uk2 ⊗ . . . , (ki =
M − i + 1, i � 1). Let FM be the quotient space ofUM defined by the map (2.21).
Then FM is a subspace of∧∞2 V (z), and the vectorsuk1 ∧ uk2 ∧ . . ., (k1 > k2 > . . .,
ki = M − i + 1, i � 1) form a basis ofFM . We will call the spaceFM the q-deformed
Fock space.

2.3. Actions of the quantum affine algebra on the q-wedge product

We will define two actions ofU ′q(ŝln) on the space∧NV (z).
The first one is defined as follows.

Ei(m⊗ v) =
N∑
j=1

m⊗ Ei,i+1
j Ki

j+1 . . . K
i
Nv (2.22)

Fi(m⊗ v) =
N∑
j=1

m⊗ (Ki
1)
−1 . . . (Ki

j−1)
−1E

i+1,i
j v (2.23)

Ki(m⊗ v) = m⊗Ki
1K

i
2 . . . K

i
Nv (i = 1, 2, . . . , n− 1) (2.24)

E0(m⊗ v) =
N∑
j=1

mY−1
j ⊗ En,1j K0

j+1 . . . K
0
Nv (2.25)

F0(m⊗ v) =
N∑
j=1

mYj ⊗ (K0
1)
−1 . . . (K0

j−1)
−1E

1,n
j v (2.26)

K0 = (K1K2 . . . Kn−1)
−1. (2.27)

HereEi,kj = 1⊗
j−1 ⊗ Ei,k ⊗ 1⊗

N−j
, whereEi,k ∈ End(V ) is the matrix unit in the basis

v1, . . . , vn, andKi
j = qE

i,i
j −Ei+1,i+1

j , K0
j = (K1

j K
2
j . . . K

n−1
j )−1.

We will denote this action byU(N)

0 . Note that it is well defined on the quotient space
∧NV (z) in view of the relations of the affine Hecke algebra.

The second one is defined as follows.

E0(m⊗ v) =
N∑
j=1

mzj ⊗ En,1j K0
j+1 . . . K

0
Nv (2.28)

F0(m⊗ v) =
N∑
j=1

mz−1
j ⊗ (K0

1)
−1 . . . (K0

j−1)
−1E

1,n
j v. (2.29)

The actions of other generators are the same as in (2.22)–(2.24), (2.27).
We will denote this action byU(N)

1 . Again, this action is well defined on the quotient
space∧NV (z) in view of the relations of the affine Hecke algebra.
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2.4. Level-0 action of the quantum affine algebra on the q-deformed Fock space

We will define a level-0 action ofU ′q(ŝln) on FM(M ∈ Z) following the paper [16, 13].
Let e := (ε1, ε2, . . . , εN) whereεi ∈ {1, 2, . . . , n}. For a sequencee we set

ve := vε1 ⊗ vε2 ⊗ · · · ⊗ vεN (∈ ⊗NCn). (2.30)

A sequencem := (m1, m2, . . . , mN) from ZN is calledn-strict if it contains no more than
n equal elements of any given value. Let us define the setsMn

N andE(m) by

Mn
N := {m = (m1, m2, . . . , mN) ∈ ZN |m1 6 m2 6 · · · 6 mN,m is n-strict} (2.31)

and form ∈Mn
N

E(m) := {e = (ε1, ε2, . . . , εN) ∈ {1, 2, . . . , n}N |εi > εi+1 ∀i s.t. mi = mi+1}. (2.32)

In these notations the set

{w(m, e) := 3(zm ⊗ ve) = zm1vε1 ∧ zm2vε2 ∧ . . . ∧ zmN vεN |m ∈Mn
N , e ∈ E(m)} (2.33)

is nothing but the base of the normally ordered wedges in∧NV (z). We will use the notation
w(m, e) exclusivelyfor normally ordered wedges.

Similarly for a semi-infinite wedgew = uk1∧uk2∧ . . . = zm1vε1∧zm2vε2∧ . . ., such that
w ∈ FM , the semi-infinite sequencesm = (m1, m2, . . .) ande = (ε1, ε2, . . .) are defined
by ki = εi − nmi , εi ∈ {1, 2, . . . , n}, mi ∈ Z. In particular them- ande- sequences of the
vacuum vector inFM will be denoted bym0 ande0:

|M〉 = uM ∧ uM−1 ∧ uM−2 ∧ . . . = zm0
1vε0

1
∧ zm0

2vε0
2
∧ zm0

3vε0
3
∧ . . . . (2.34)

The Fock spaceFM is Z>0-graded. For any semi-infinite wedgew = uk1 ∧ uk2 ∧ . . . =
zm1vε1 ∧ zm2vε2 ∧ . . . ∈ FM the degree|w| is defined by

|w| =
∑
i>1

m0
i −mi. (2.35)

Let us denote byFkM ⊂ FM the homogeneous component of degreek.
We will define a level-0 action ofU ′q(ŝln) on the Fock spaceFM in such a way that

each homogeneous componentFkM will be invariant with respect to this action. Throughout
this section we fix an integerM ands ∈ {0, 1, 2, . . . , n− 1} such thatM = s modn.

Let l be a non-negative integer and defineV s+nlM ⊂ ∧s+nlV (z) as follows:

V s+nlM =
⊕

m∈Mn
s+nl ,e∈E(m)

ms+nl6m0
s+nl

Cw(m, e). (2.36)

The vector spaceV s+nlM has a grading similar to the grading of the Fock spaceFM . In this
case the degree|w| of a wedgew = uk1∧uk2∧. . .∧uks+nl = zm1vε1∧zm2vε2∧. . .∧zms+nl vεs+nl ∈
V s+nl
M is defined by

|w| =
s+nl∑
i=1

m0
i −mi. (2.37)

The degree is a non-negative integer, and fork ∈ Z>0 we denote byV s+nl,kM the homogeneous
component of degreek.

The following result is contained in the paper [16]:

Proposition 1.For eachk ∈ Z>0 the homogeneous componentV s+nl,kM ⊂ ∧s+nlV (z) is
invariant under theU ′q(ŝln)-actionU(s+nl)

0 defined in section 2.3.
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We have|ρM,kl (w)| = |w| and henceρM,kl : V s+nl,kM → FkM for all k ∈ Z>0. In the paper
[13] the following propositions are shown.

Proposition 2.When l > k the mapρM,kl is an isomorphism of vector spaces.

Proposition 3.For each triple of non-negative integersk, l,m such thatk 6 l < m the map
ρ
M,k
l,m : V s+nl,kM → V

s+nm,k
M , defined for anyw ∈ V s+nl,kM by

ρ
M,k
l,m (w) = w ∧ uM−s−nl ∧ uM−s−nl−1 ∧ . . . ∧ uM−s−nm+1 (2.38)

is an isomorphism of theU ′q(ŝln)-modules.

We define on the vector spaceFkM a level-0 action ofU ′q(ŝln) by using propositions 2
and 3.

Definition 2. The vector spaceFkM is a level-0 module ofU ′q(ŝln) with the actionU0 defined
by

U0 = ρM,kl U
(s+nl)
0 ρ

M,k
l

−1
wherel > k. (2.39)

This definition does not depend on the choice ofl as long asl is greater or equal tok.
Since we have

FM =
⊕
k>0

FkM (2.40)

the level-0 actionU0 extends to the entire Fock spaceFM .

2.5. Level-1 action of the quantum affine algebra on the q-deformed Fock space

In this section we review the level-1 action ofU ′q(ŝln) on the Fock spaceFM [9].

First we define the action ofU ′q(ŝln) (generated byEi, Fi,Ki, i = 0, . . . , n− 1) on the
vector |M ′〉 as follows.

Ei |M ′〉 = 0 (2.41)

Fi |M ′〉 =
{
uM ′+1 ∧ uM ′−1 ∧ uM ′−2 ∧ . . . if i ≡ M ′modn

0 otherwise
(2.42)

Ki |M ′〉 =
{
q|M ′〉 if i ≡ M ′modn

|M ′〉 otherwise.
(2.43)

For every elementv ∈ FM , there existsN such that

v = v(N) ∧ |M −N〉 v(N) ∈ ∧NV (z). (2.44)

We define the actions ofEi, Fi,Ki, i = 0, . . . , n− 1 on the vectorv as follows.

Eiv := Eiv(N) ∧Ki |M −N〉 + v(N) ∧ Ei |M −N〉 (2.45)

Fiv := Fiv(N) ∧ |M −N〉 +K−1
i v(N) ∧ FiM −N〉 (2.46)

Kiv := Kiv(N) ∧Ki |M −N〉. (2.47)

The actions ofEi, Fi,Ki , i = 0, . . . , n − 1 on v(N) are determined in section 2.3. The
definition of the actions onv does not depend onN and is well defined, and we can easily
check that theU ′q(ŝln)-module defined in this section is level-1. We will use the notation

U1 for this U ′q(ŝln)-action on the Fock space.

Remark.The two actionsU0 andU1 appear as the representations of the subalgebras of the
quantum toroidal algebra. For details, see [13].
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2.6. Thep = 1 case

In the paper [9] it was demonstrated that the Fock spaceFM admits an action of the
Heisenberg algebraH which commutes with the level-1 actionU1 of the algebraU ′q(ŝln).
The Heisenberg algebra is a unitalC-algebra generated by elements 1, Ba with a ∈ Z 6=0

which are subject to relations

[Ba, Bb] = δa+b,0a1− q2na

1− q2a
. (2.48)

The Fock spaceFM is anH -module with the action of the generators given by [9]

Ba =
∞∑
i=1

zai . (2.49)

Let C[H−] be the Fock space ofH , i.e. C[H−] = C[B−1, B−2, . . . , ]. The element
B−a(a = 1, 2, . . .) acts onC[H−] by multiplication. The action ofBa(a = 1, 2, . . .) is
given by (2.48) together with the relation

Ba · 1= 0 for a > 1. (2.50)

Let 3i(i ∈ {0, 1, . . . , n − 1}) be the fundamental weights of̂sl
′
n and letV (3i) be the

irreducible (level-1) highest weight module ofU ′q(ŝln) with highest weight vectorV3i and
highest weight3i .

The following results are proven in [9].
• The action of the Heisenberg algebra onFM and the actionU1 of U ′q(ŝln) commute.
• There is an isomorphism

ιM : FM ∼= V (3i)⊗ C[H−] (M = i modn) (2.51)

of U ′q(ŝln)⊗H -modules normalized so thatιM(|M〉) = V (3i)⊗ 1.

In general the level-0U ′q(ŝln)-actionU0 does not commute with the Heisenberg algebra.
However, if we choose the parameterp in U0 in a special way, thenU0 commute with the
negative frequency part ofH . Precisely, we have the following proposition, proved in [13].

Proposition 4.At p = 1 we have

[U0, H−] = 0. (2.52)

Let H ′− be the non-unital subalgebra inH generated byB−1, B−2, . . .. Proposition 4
allows us to define a level-0U ′q(ŝln)-module structure on the irreducible level-1 module
V (3i)(i ∈ {0, 1, . . . , n− 1}). Indeed from this proposition it follows that the subspace

H ′−FM ⊂ FM (2.53)

is invariant with respect to the actionU0 at p = 1 and therefore a level-0 action ofU ′q(ŝln)
is defined on the quotient space

FM/(H
′
−FM) (2.54)

which in view of (2.51) is isomorphic toV (3i) with i ≡ M mod n.
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Figure 1. λ = (4, 4, 2, 2, 1), µ = (3, 1, 1).

3. Skew Young diagrams and the level-0 representations ofU ′q(ŝln)

3.1. Skew Young diagrams

Let us recall, following the book [12], the definitions of the skew (Young) diagrams, their
semi-standard tableaux (SST) and the associated skew Schur functions.

Let λ,µ be partitions i.e. sequences of non-negative integers. We assumeλi > µi
for all possible i, and if µj < i 6 λj then we draw a square whose edges are
(i − 1, j − 1), (i − 1, j), (i, j) and(i, j − 1). (For example, see figure 1.) This diagram is
called a skew (Young) diagram and is denoted asλ \ µ. We define the degree of the skew
Young diagramλ \ µ as |λ \ µ| =

∑
i (λi − µi).

A skew diagram is called a border strip if it is connected and contains no 2× 2 blocks
of boxes. Let〈m1, . . . , mr〉 denote the border strip ofr columns such that the length ofith
column (from the right) ismi (figure 1).

A SST of the skew diagramλ \µ is obtained by inscribing integers 1, 2, . . . , n in each
square of the skew diagram. The rule of the SST is as follows. The numbers are strictly
increasing along the column and weakly increasing along the row. For each SSTT , let
ni(T ) be the multiplicity ofi in T .

Definition 3. For each skew diagramλ \ µ, the skew Schur functionsλ\µ is defined as
follows

sλ\µ(z) =
∑
T

z
n1(T )

1 z
n2(T )

2 . . . z
nN (T )
N . (3.1)

Here the summation is over the set of SST of the skew diagramλ \ µ.

3.2. The level-0 representations ofU ′q(ŝln) associated with the skew diagrams

Fix a skew diagramλ\µ of the border-strip type and degreeN . We put a number(1, . . . , N)
on each box such that ifl > k thenxl > xk or (xl = xk andyl > yk), where(x, y) is a box
contained in the skew diagram, and setal = −2xl + 2yl + a (a is fixed) (figure 2).

On the space⊗NV , we define the evaluation actionπ(N)a1,...,aN
of U ′q(ŝln)

π(N)a1,...,aN
(Ei) =

N∑
j=1

E
i,i+1
j Ki

j+1 . . . K
i
N (3.2)
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Figure 2. The case〈2, 1, 3〉.

π(N)a1,...,aN
(Fi) =

N∑
j=1

(Ki
1)
−1 . . . (Ki

j−1)
−1E

i+1,i
j (3.3)

π(N)a1,...,aN
(Ki) = Ki

1K
i
2 . . . K

i
N (i = 1, 2, . . . , n− 1) (3.4)

π(N)a1,...,aN
(E0) =

N∑
j=1

qajE
n,1
j K0

j+1 . . . K
0
N (3.5)

π(N)a1,...,aN
(F0) =

N∑
j=1

q−aj (K0
1)
−1 . . . (K0

j−1)
−1E

1,n
j (3.6)

π(N)a1,...,aN
(K0) = (π(N)a1,...,aN

(K1K2 · · ·Kn−1))
−1 (3.7)

and on the same space, we consider the following operators:

Ri,j (x) =
xS−1

i,j − Si,j
x − 1

Pi,j Ři,j (x) =
xS−1

i,j − Si,j
x − 1

(3.8)

wherePi,j (· · · ⊗ i
u⊗ · · · ⊗ j

v ⊗ · · ·) = · · · ⊗ i
v ⊗ · · · ⊗ j

u⊗ · · ·. We define

Rλ\µ =
∏

16i<j6N
Ri,j (q

ai−aj ) (3.9)

R̄λ\µ =
∏

16i<j6N
Rj,i(q

ai−aj ) (3.10)

Řλ\µ =
∏

16i<j6N
ŘN+i−j,N+i−j+1(q

ai−aj ) (3.11)

where(i, j) is on the right to(i ′, j ′) in the product ifi < i ′ or (j < j ′ and i = i ′). As a
special case of [3] proposition 1.5, we have the following proposition.

Proposition 5 ([3]). The subspace ImRλ\µ(⊗NV )(= Im Řλ\µ(⊗NV )) with the action
π(N)a1,...,aN

is an irreducibleU ′q(ŝln)-module, and the mapŘλ\µ: (π(N)aN ,...,a1
,⊗NV/ Ker

R̄λ\µ) = (π(N)aN ,...,a1
,⊗NV/ Ker Řλ\µ)) → (π(N)a1,...,aN

, Im Řλ\µ) is an isomorphism of the
U ′q(ŝln)-modules.
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Remark.In [3], this proposition is proved in theU ′q(ĝln)-module case and the normalizations

of q andx are different. The irreducibility as theU ′q(ŝln)-module follows from the result
of [1].

3.3. Character formulae

Let 3i(i = 1, . . . , n − 1) be the fundamental weights ofsln and letεi = 3i − 3i−1(i =
1, . . . , n) with 30 = 3n := 0.

The subalgebra ofU ′q(ŝln) generated byEi, Fi,K
±
i (i = 1, . . . n−1) is isomorphic to the

algebraUq(sln). In the paper [10] thesln-character of the irreducibleY (sln)-representation
associated with a skew diagram was shown to be given by the corresponding skew Schur
function. This result is immediately generalized to theq-deformed situation. Precisely we
have the following proposition.

Proposition 6.[10]. The skew Schur functionsλ\µ(z) wherezi = eεi is equal to theUq(sln)-
character of the irreducibleU ′q(ŝln)-module described by proposition 5.

As a corollary we obtain the following.

Corollary 1. The dimension of the space ImRλ\µ ⊂ (⊗NV ) is equal to the total number of
the SST of the skew diagramλ \ µ.

Let V (3k) be the level-1 irreducible module ofUq(ŝln) whose highest weight is the

kth fundamental weight3k of ŝl
′
n. We set ch(V (3k)) =

∑
i,λ(dimVλ,i)e

λqi , whereVλ,i
is the weight subspace withUq(sln)-weight λ and homogeneous degreei. The following
proposition is proved in [10].

Proposition 7. [10] Settingzi = eεi we have

ch(V (3k)) = q 1−n
24 − k(n−k)

2n

∑
θ∈BS|θ |≡kmodn

q
1

2n |θ |(n−|θ |)+t (θ)sθ (z) (3.12)

whereBS is the set of all the border stripsθ = 〈m1, . . . , mr〉 and t (θ) = ∑r−1
i=1(r − i)mi

with mr < n.

Note that ifmi > n for somei, then the skew Schur functionsθ is equal to 0, moreover,

for the border strip of the formθl = 〈m1, . . . , mr,

l︷ ︸︸ ︷
n, . . . n〉 the number1

2n |θl|(n−|θl|)+ t (θl)
does not depend onl.

4. Non-symmetric Macdonald polynomials and the decomposition

4.1. Non-symmetric Macdonald polynomials

We will define the non-symmetric Macdonald polynomials as the joint eigenfunctions of the
Cherednik’s operatorsY (N)i (i = 1, . . . , N) [17, 16]. It will be convenient for our purposes
to label these polynomials by the set of pairs(λ, σ ) which we now describe.

Let M̃N be the a set of all non-decreasing sequences of integersλ = (λ1, λ2, . . . , λN)

and letM̃n
N be the subset ofM̃N which consists of alln-strict non-decreasing sequences
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(cf section 2.4). For eachλ ∈ M̃N we set |λ| := ∑N
i=1 λi . For λ,µ ∈ M̃N such that

|λ| = |µ| we define the dominance (partial) ordering:

λ � µ⇔
i∑

j=1

λj >
i∑

j=1

µj(i ∈ {1, 2, . . . , N}). (4.1)

Let Sλ ⊂ SN be the set of elementsσ such that ifλσ(i) = λσ(j) and σ(i) < σ(j) then
i < j . We define the total ordering onSλ:

σ � σ ′ ⇔ the last non-zero element of(λσ(i) − λσ ′(i))Ni=1 is < 0. (4.2)

Then the following properties are satisfied. (In what follows theσ(i, i + 1) denotes the
composition ofσ and a transposition(i, i + 1).)

(a) Sλ has the unique minimal element with respect to the ordering (4.2). We denote
this element by min. Note that the one we want hasλmin(i) 6 λmin(i+1) (i = 1, . . . , N − 1).

(b) Sλ is connected, i.e. for anyσ ∈ Sλ, there existi1, . . . , ir such that if we put
σl = σ(i1, i1+ 1) . . . (il, il + 1) thenσr = min, σl ∈ Sλ, σl � σl+1(l = 1, . . . , r).

(c) Supposeσ ∈ Sλ, thenσ(i, i + 1) ∈ Sλ ⇔ λσ(i) 6= λσ(i+1).
(d) If λσ(i) > λσ(i+1) andσ ∈ Sλ thenσ � σ(i, i + 1).
We define the partial ordering of the set{(λ, σ )|λ ∈ M̃N, σ ∈ Sλ}:

(λ, σ ) � (λ̃, σ̃ )⇔ |λ| = |λ̃| and

{
λ � λ̃
λ = λ̃, σ � σ̃ .

(4.3)

ThenY (N)i act triangularly onC[z±1
1 , . . . , z±1

N ] with respect to this ordering [17]:

Y
(N)
i zλ

σ = ξλi (σ )zλ
σ + ‘lower terms’ (4.4)

ξλi (σ ) = pλσ(i)q2σ(i)−N−1 (σ ∈ Sλ). (4.5)

In the above notation, we identify the ordering of monomialszλ
σ

:= zλσ(1)1 z
λσ(2)
2 . . . z

λσ(N)
N with

the ordering on the set of pairs(λ, σ ).
For genericq and p the pair (λ, σ ) is uniquely determined from the ordered set

(ξλ1 (σ ), ξ
λ
2 (σ ), . . . ξ

λ
N(σ )):

(λ, σ ) 6= (λ̃, σ̃ )⇔ (ξλ1 (σ ), ξ
λ
2 (σ ), . . . ξ

λ
N(σ )) 6= (ξ λ̃1 (σ̃ ), ξ λ̃2 (σ̃ ), . . . ξ λ̃N (σ̃ )). (4.6)

Therefore one can simultaneously diagonalize the operatorsY
(N)
i (16 i 6 N).

Y
(N)
i 8λ

σ (z) = ξλi (σ )8λ
σ (z) 8λ

σ (z) = zλ
σ + ‘lower terms’. (4.7)

The Laurent polynomial8λ
σ (z) is known as the non-symmetric Macdonald polynomial.

The action ofgi,i+1 on the non-symmetric Macdonald polynomial is as follows [17].

gi,i+18
λ
σ (z) = Ai(σ )8λ

σ (z)+ Bi(σ )8λ
σ(i,i+1)(z) (4.8)

Ai(σ ) := (q − q−1)x

x − 1
Bi(σ ) :=


q−1{x} (λσ(i) > λσ(i+1))

0 (λσ(i) = λσ(i+1))

q−1 (λσ(i) < λσ(i+1))

(4.9)

{x} := (x − q2)(q2x − 1)

(x − 1)2
x := ξλi+1(σ )

ξλi (σ )
. (4.10)

The casep = 1 is not generic. However, from the results of [11] it follows that the
coefficients of8λ

σ (z) have no poles atp = 1. Therefore the non-symmetric Macdonald
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polynomials8λ
σ (z) are still well defined atp = 1 and the formulae (4.7)–(4.10) are still

satisfied.
In what follows we will let 8̃λ

σ (z) denote the non-symmetric Macdonald polynomial
at p = 1. In virtue of the triangularity (4.4) the non-symmetric Macdonald polynomials
8̃λ
σ (z)(λ ∈ M̃N , σ ∈ Sλ) form a base ofC[z±1

1 , . . . , z±1
N ]. We put

Eλ =
⊕
σ∈Sλ

C8̃λ
σ (z). (4.11)

ThenC[z±1
1 , . . . , z±1

N ] = ⊕λEλ. In section 4.2 we will use the following lemma.

Lemma 1.Let e−k =
∑

16n1<...<nk6N z
−1
n1
. . . z−1

nk
. Suppose thatλ ∈ M̃N satisfiesλi−λi+1 =

0 or 1. Then we have

e−k8̃λ
ς (z) = 8̃λ̃

ς (z). (4.12)

Here λ̃ = (λ1, . . . , λN−k, . . . , λN−k+1 − 1, . . . , λN − 1) and ς(∈ Sλ, Sλ̃) is the minimal
element ofSλ.

Proof. By the triangularity of the non-symmetric Macdonald polynomial (4.4), we have

e−k8̃λ
ς (z) = e−k

(
zλ

ς +
∑

µ≺λ,σ∈Sµ
cµ,σ z

µσ
)
= zλ̃ς +

∑
(µ,σ )≺(λ̃,ς)

c′µ,σ z
µσ

= 8̃λ̃
ς (z)+

∑
(µ,σ )≺(λ̃,ς)

c′′µ,σ 8̃
µ
σ (z). (4.13)

At p = 1, the operatorsY (N)i commute with symmetric Laurent polynomials considered as
multiplication operators onC[z±1

1 , . . . , z±1
N ]. Hence we have

Y
(N)
i e−k8̃λ

ς (z) = e−kY (N)i 8̃λ
ς (z) = q2ς(i)−N−1e−k8̃λ

ς (z). (4.14)

The ordered set of eigenvalues{q2σ(i)−N−1}Ni=1 determines the elementσ ∈ Sλ̃ uniquely.
Hence (4.13) and (4.14) lead to

e−k8̃λ
ς (z) = 8̃λ̃

ς (z)+
∑
µ≺λ̃

c′′µ8̃
µ
ς (z). (4.15)

Now let us consider anyµ which appears in the sum (4.15). If there existsi(< N − k)
such thatµi < λi then for j > i we necessarily haveµj < λj because of the assumption
λi − λi+1 = 0 or 1 and the fact thatλi < λj impliesµi < µj , which follows sinceς ∈ Sµ.
However,µj < λj (j > i) leads to|λ̃| > |µ| which is in contradiction withµ ≺ λ̃. Thus
we haveµi > λi(i < N − k). If µi > λi for somei, then necessarilyµ 6� λ̃ which is
again a contradiction. Hence we obtainµi = λi(i < N − k). By the conditionµ ≺ λ̃,
we haveµN−k = λ̃N−k. Because of the assumption onλ and the fact thatλi < λj implies
µi < µj , we obtainµj 6 λ̃j (j > N − k). Combining this with|λ̃| = |µ| we conclude that
µj = λ̃j∀j . That is the second term in the r.h.s. of (4.15) is zero. �
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4.2. The decomposition

Let us consider the quotient spaceFM/H ′−FM and for eachk > 0 its subspaceFkM/(H
′
−FM∩

FkM).
It is straightforward to establish the necessary and sufficient condition for the vector

ω = ∑
λ

∑
σ∈Sλ 8̃

λ
σ (z) ⊗ ψλ

σ (∈ C[z±1
1 , . . . , z±1

N ] ⊗ (⊗NV )) to be equivalent to 0 in the
quotient space∧NV (z). The result is

∀λ
{
ψλ
σ(i,i+1) = −Ři,i+1(q

2(σ (i)−σ(i+1)))ψλ
σ ∀σ s.t. λσ(i) > λσ(i+1)

(q−2S−1
i,i+1− Si,i+1)ψ

λ
σ = 0 ∀σ s.t. λσ(i) = λσ(i+1)

(4.16)

where Ři,i+1(x) is defined in (3.8). In view of the properties of the setSλ, in the space
∧NV (z) we have

8̃λ
σ (z)⊗ ψσ ∼ 8̃λ

min(z)⊗ Řir ,ir+1(q
2(σr (ir+1)−σr (ir ))) . . . Ři1,i1+1(q

2(σ1(i1+1)−σ1(i1)))ψσ . (4.17)

Here we used the notations of section 4.1.
By the triangularity of the non-symmetric Macdonald polynomial (4.4) and the relation

(4.17), we obtain

V
s+nk,k
M =

⊕
λ

(Eλ ⊗ (⊗NV ))/� ∩ (Eλ ⊗ (⊗NV ))

=
⊕
λ

(8̃λ
min(z)⊗ (⊗NV ))/� ∩ (8̃λ

min(z)⊗ (⊗NV )) (4.18)

where the summation is overλ ∈ M̃n
N , such thatλ1 6 m0

s+nk, |m0− λmin| = k.

Proposition 8.Define the setM̃n,k
s+nk as

M̃n,k
s+nk = {λ ∈ M̃n

s+nk|λ1 6 m0
s+nk, |m0− λmin| = k andλi − λi+1 = 0 or 1}. (4.19)

Every vector from the linear spaceFkM/(H
′
−FM ∩ FkM) can be expressed as a linear

combination of vectors of the form∧(8̃λ
min(z) ⊗ ψλ)|M − s − nk〉, whereλ ∈ M̃n,k

s+nk
andψλ ∈ ⊗NV .

Proof. By the equation (4.18) it is sufficient to show that∧(8̃λ
min(z) ⊗ ψλ)|M − s −

nk〉(λinM̃s+nk, λ1 6 m0
s+nk, |m0 − λmin| = k, ψλ ∈ ⊗NV ) is equivalent to 0 in the space

FkM/(H
′
−FM ∩ FkM) unlessλi − λi+1 = 0 or 1 for all i = 1, . . . , N − 1 . We will prove this

by induction with respect to the ordering of the setM̃s+nk. (Note that ifλ is not n-strict
then∧(8̃λ

min(z)⊗ ψλ) = 0.)
Sinceλi − λi+1 6= 0, 1 implies that(λ1, . . . , λi − 1, λi+1+ 1, . . .) is lower with respect

to the ordering ofM̃s+nk, the minimal element satisfies the condition of proposition 8.
Fix λ and assume that the proposition is proved for allµ such thatµ ≺ λ. Define

λ̃ ∈ M̃s+nk as follows:

λi = λi+1⇔ λ̃i = λ̃i+1 (4.20)

λ1 = λ̃1 (4.21)

λ̃i 6= λ̃i+1⇒ λ̃i = λ̃i+1+ 1. (4.22)

For each positive integerl, definenl = #{i|λ̃i − λi = l}. If nl = 0 for all l(> 1) then
either∧(8̃λ

min(z)⊗ ψλ)|M − s − nk〉 itself satisfies the condition of proposition 8, or else
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the element
∏
l>1B

nl
−l · ∧(8̃λ̃

min(z)⊗ψλ)|M − s−nk〉 is in H ′−FM ∩FkM . Expanding the last
element, in the spaceFkM/(H

′
−FM ∩ FkM) we obtain

∧(8̃λ
min(z)⊗ ψλ)|M − s − nk〉 +

∑
µ≺λ,σ∈Sµ

∧(8̃µ
σ (z)⊗ ψµ

σ )|M − s − nk〉 ∼ 0 (4.23)

for someψµ
σ . By (4.17) and the induction assumption the proposition is proven. �

Proposition 9.For eachλ ∈ M̃n,k
s+nk, defineJ and rj such thatλ1 = · · · = λrJ > λrJ+1 =

· · · = λrJ+rJ−1 > · · · > λr1+···+rJ (=N), then in the spaceFkM/(H
′
−FM ∩ FkM), for each

ψ ∈ ⊗NV we have

∧(8̃λ
min(z)⊗ Ri,i+1(q

2)ψ)|M − s − nk〉 ∼ 0 (λmin(i) = λmin(i+1)) (4.24)

∧
(
8̃λ

min(z)⊗
∏

16a6rj
06b6rj+1−1

Rlj+a,lj+rj+rj+1−b(q
−2(a+b))ψ

)∣∣∣∣M − s − nk〉 ∼ 0 (4.25)

where (a, b) is on the right to(a′, b′) in the product ifa < a′ or (a = a′ and b < b′),
lj =

∑j−1
i=1 rj and l0 = 0.

Proof. The first relation follows from (4.16) and the identity

Im (q2S−1
i,i+1− Si,i+1) = Ker(q−2S−1

i,i+1− Si,i+1). (4.26)

Consider the second relation. We define

λ̄ = (λ1, . . . , λrj+1+...+rJ , λ1+rj+1+...+rJ + 1, . . . , λN + 1). (4.27)

By lemma 1, the definition of the spaceFkM/(H
′
−FM ∩ FkM) and the relation (6.51) in [13],

we obtain

f (B−1, . . . , B−(r1+...+rj )) · ∧(8̃λ̄
min(z)⊗ ψ)|M − s − nk〉

= (f (B−1, . . . , B−(r1+...+rj )) · ∧(8̃λ̄
min(z)⊗ ψ))|M − s − nk〉

= ∧ (8̃λ
ς (z)⊗ ψ)|M − s − nk〉 ∼ 0. (4.28)

Heref (x1, . . . , xl) is a polynomial such that

f

( N∑
i=1

zi,

N∑
i=1

z2
i , . . . ,

N∑
i=1

zli

)
=

∑
i1<...<il

zi1 . . . zil (4.29)

andς ∈ Sλ is the minimal element ofSλ̄.
If we apply the formula (4.17), we obtain

∧(8̃λ
min(z)⊗

∏
06a6rj−1

06b6rj+1−1

Řlj+rj+1−b+a,lj+rj+1−b+a+1(q
−2(a+b+1))ψ)|M − s − nk〉 ∼ 0 (4.30)

where(a, b) on the right to(a′, b′) in the product ifa < a′ or (a = a′ andb < b′). Finally,
taking into account the relation∏

06a6rj−1
06b6rj+1−1

Řlj+rj+1−b+a,lj+rj+1−b+a+1(q
−2(a+b+1))

∏
16a6rj

06b6rj+1−1

Plj+a,lj+rj+rj+1−b

=
∏

16a6rj
06b6rj+1−1

Rlj+a,lj+rj+rj+1−b(q
−2(a+b)) (4.31)
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we obtain (4.25). �

With notations of proposition 9, for eachλ ∈ M̃n,k
s+nk define the linear subspace of⊗NV

V λ =
∑

λmin(i)=λmin(i+1)

ImRi,i+1(q
2)+

J−1∑
j=1

Im

( ∏
16a6rj

16b6rj+1−1

Rlj+a,lj+rj+rj+1−b(q
−2(a+b))

)
. (4.32)

By proposition 9, we obtain the following.

Proposition 10.Consider the map

ψk :
⊕

λ∈M̃n,k
s+nk

8̃λ
min(z)⊗ (⊗s+nkV/V λ)→ FkM/(H

′
−FM ∩ FkM)

v 7→ v ∧ |M − s − nk〉.
(4.33)

Define the action ofU ′q(ŝln) on the l.h.s. of (4.33) by (2.22)–(2.27).

Then the mapψk is well defined, surjective and is aU ′q(ŝln)-intertwiner.

Proposition 11.Let λ ∈ M̃n,k
s+nk(=N). For any suchλ we defineJ, rj andlj in the same way

as in proposition 9. Letθ be the border strip characterized by〈rJ , rJ−1, . . . , r1〉. We have

⊗NV/V λ = ⊗NV/Ker R̄θ . (4.34)

Proof. First we will show that⊗NV/V λ ⊃ ⊗NV/Ker R̄θ . Applying repeatedly the Yang–
Baxter equationRa,b(x)Ra,c(xy)Rb,c(y) = Rb,c(y)Ra,c(xy)Ra,b(x), we can move some
special elements to the right in the product

R̄θ = . . . Ri+1,i (q
−2) = . . .

∏
16a6rj+1
06b6rj−1

Rlj+rj+a,lj+rj−b(q
2(a+b)) (4.35)

where(a, b) on the right to(a′, b′) in the product ifa < a′ or (a = a′ and b < b′), and
λmin(i) = λmin(i+1). By the formula

Rb,a(x)Ra,b(x
−1) = (x − q2)(x−1q−2− 1)

(x − 1)(x−1− 1)
id (4.36)

we obtain⊗NV/V λ ⊃ ⊗NV/Ker R̄θ .
Next we will show that⊗NV/V λ ⊂ ⊗NV/Ker R̄θ . We show that the vectors⊗Ni=1vei

such thatei < ei+1 if λmin(i) = λmin(i+1), ei > ei+1 if λmin(i) 6= λmin(i+1) span the space
⊗NV/V λ.

Using the relationsRi ′,i ′+1(q
2)(⊗Nvei ) ∼ 0(λmin(i ′) = λmin(i ′+1)) we find that the set

of vectors {⊗Ni=1vei | if λmin(i) = λmin(i+1) then ei < ei+1} spans the space⊗NV/V λ.
For each vector of the form⊗Ni=1vei we defineÑ(⊗Ni=1vei ) = #{(i, j)|i < j, ei > ej and
λmin(i) 6= λmin(j)}. Consider the vector⊗Ni=1vei such that ifλmin(i) = λmin(i+1) thenei < ei+1.
Assume that there is ani such thatei < ei+1 (if λmin(i) 6= λmin(i+1)), then we obtain the
relation ∏

16a6rj
16b6rj+1−1

Rlj+a,lj+rj+rj+1−b(q
−2(a+b))(⊗Nvei ) ∼ 0 (4.37)

for all possiblej . By (4.37), the vector⊗Nvei is equivalent to a linear combination of
the vectors⊗Nvei′ such thatÑ(⊗Nvei′ ) < Ñ(⊗Nvei ). Because⊗Nvei′ is invariant by the
relationsRi ′,i ′+1(q

2)(⊗Nvei ) (lj +16 i ′ 6 lj+1−1, lj+1+16 i ′ 6 lj+2−1), if we use these
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relations we obtain that the vector⊗Nvei (ei < ei+1 if λmin(i) = λmin(i+1)) is expressed by
the sum of⊗Nvei′ such thatÑ(⊗Nvei′ ) < Ñ(⊗Nvei ) andei ′ < ei ′+1 (if λmin(i ′) 6= λmin(i ′+1)).

By the induction onÑ we find that the vectors⊗Nvei (ei < ei+1 if λmin(i) = λmin(i+1),
ei > ei+1 if λmin(i) 6= λmin(i+1)) span the space⊗NV/V λ.

The number of these vectors is equal to the number of SST ofθ . By corollary 1, we
obtain⊗NV/V λ ⊂ ⊗NV/Ker R̄θ . �

In what follows we identify the border strips〈m1, . . . , mr〉 and〈m1, . . . , mr, n, . . . , n〉,

and identify(λ1, . . . , λs+nk) and(

n︷ ︸︸ ︷
λ1+ 1, . . . , λ1+ 1, λ1, . . . , λs+nk) which are elements of∐

k M̃
n,k
s+nk. Proposition 11 gives a one-to-one correspondence of

∐
k M̃

n,k
s+nk and the set of

all skew Young diagrams of the border-strip type〈m1, . . . , mr〉 which satisfymi 6 n for all
i and

∑r
i=1mi ≡ s mod n. On this correspondence the degree of the semi-infinite wedge

∧(8̃λ
min(z)⊗ ψ)|M − s − nk〉 is equal to1−n

24 − k(n−k)
2n + 1

2n |θ |(n− |θ |)+ t (θ), whereθ is

the border strip which corresponds toλ and t (θ) =∑r−1
i=1(r − i)mi .

We define ch(FM/H ′−FM) =
∑

µ,i dim(Vµ,i)eµqi , where Vµ,i is the subspace of
FM/H

′
−FM of the degree (2.37)i and of theUq(sln)-weight µ. We put

∑
µ,i aµ,ie

µqi 6∑
µ,i bµ,ie

µqi iff aµ,i 6 bµ,i for all µ and i. By proposition 10 we have

ch(FM/H
′
−FM) 6 q

1−n
24 − k(n−k)

2n

∑
θ∈BS|θ |≡kmodn

q
1

2n |θ |(n−|θ |)+t (θ)sθ (z). (4.38)

FM/H
′
−FM with U1-action is isomorphic toV (3k), this isomorphism is degree preserving

with respect to the degree (2.37) onFM/H ′−FM and the homogeneous degree onV (3k) and
the character formula ofV (3k) is given in proposition 7. Hence the inequality of (4.38) is,
in fact, an equality and, therefore, the map (4.33) must is bijective. Thus have the following
theorem.

Theorem 12.We have the isomorphism ofU ′q(ŝln)-modules:

FM/H
′
−FM '

⊕
θ

Vθ (4.39)

where the sum is over all border strips〈m1, . . . mr〉, (mi 6 n, mr < n andN ≡ M mod
n), the spaceVθ and the level-0U ′q(ŝln)-action is defined by(π(N)a1,...,aN

, Rθ · ⊗NV ) where

N =∑r
i=1mi andal+∑r

i=j mi = 2(l − 1+∑j−1
i=1 mi).

4.3. sl2 case

In this section we will discuss thesl2 case in a somewhat more detail.
Let Wn be the(n + 1)-dimensional irreducible module ofUq(sl2), andWn(b) be the

evaluation module with the parameterb whoseU ′q(ŝl2)-module structure is given by

E0 = qbF1 F0 = q−bE1 K0 = K−1
1 . (4.40)

It is known that every finite-dimensional irreducibleU ′q(ŝl2)-module is isomorphic to

⊗µWnµ(bµ) for somenµ andbµ. We will represent theU ′q(ŝl2)-module described by a skew
Young diagram as the tensor product of the form⊗µWnµ(bµ).

Proposition 13.Let θ be the skew Young diagram of border strip〈m1, . . . , mr〉 such that
mi = 1 or 2, andN =∑r

i=1mi , al+
∑r

i=j mi = 2(l − 1+∑j−1
i=1 mi). We putI = {i|mi = 1
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andmi−1 = 2} = {l1, l2, . . . , lr ′ }(m0 = 2, li < li+1) and letni be the integer such that
mli = . . . = mli+ni−1 = 1, mli+ni = 2 andbi = 2li + ni − 3.

TheU ′q(ŝl2)-module(π(N)a1,...,aN
, Rθ · ⊗NC2) is isomorphic toWn1(b1)⊗Wn2(b2)⊗ · · · ⊗

Wnr′ (br ′).

Proof. By proposition 5, we find that(π(N)a1,...,aN
, Rθ · ⊗NC2) is isomorphic to

(π(N)aN ,...,a1
,⊗NC2/Ker R̄θ ).

As in the proof of proposition 11, we obtain Im̌Ri,i+1(q
2) ⊂ Ker R̄θ if ai+1 = ai − 2

and ImŘi,i+1(q
−2) ⊂ Ker R̄θ if ai+1 = ai + 2.

We can directly confirm that theU ′q(ŝl2)-module(πa,a−2,C2⊗C2/Im Ř1,2(q
2)) is one-

dimensional and the module(πa,a+2,...,a+2(l−1),⊗lC2/
∑l−1

i=1 Im Ři,i+1(q
−2)) is isomorphic

to Wl(a + l − 1), where(l) is the Young diagram of degreel which has only one row.
If we put

Ṽ =
∑

i|ai+1=ai+2

Im Ři,i+1(q
2)+

∑
i|ai+1=ai−2

Im Ři,i+1(q
−2) (4.41)

then(π(N)aN ,...,a1
,⊗NC2/Ṽ ) ' Wn1(b1)⊗Wn2(b2)⊗ · · · ⊗Wnr′ (br ′).

Since the dimension ofWn1(b1)⊗Wn2(b2)⊗ · · · ⊗Wnr′ (br ′) is equal to the dimension
⊗NC2/Ker R̄θ the proof is finished. �

By proposition 13, we can rewrite the decomposition (4.39) forsl2 case. In fact we
obtain the same decomposition as [8]. More precisely we obtain:

Proposition 14.If we change the coproduct of the level-0U ′q(ŝl2)-module defined in [8] to

fit our coproduct (2.11)–(2.13), the level-0U ′q(ŝl2)-module ofV (3s) (s ≡ M mod 2,s = 0

or 1) defined in [8] is isomorphic to the level-0U ′q(ŝl2)-module ofV (3s) defined in this
paper, and the degree is preserved under this isomorphism.
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