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Abstract. The level-1 irreducible highest-weight modules of the quantum affine algebra
U, (s|,) are decomposed into irreducible components with respect to the Idvg(fﬂ,,)-action
previously defined in [13]. The components of the decomposition are found to be the so-called
tame representations &f; (s\,) parametrized by the skew Young diagrams of the border-strip
type. This result verifies a recent conjecture due to Kirik\al

1. Introduction

It is well known that quantum groups often appear as non-Abelian symmetries of one-
dimensional exactly solvable models of statistical mechanics. Existence of such symmetries
has important implications for physics described by this type of model as well as for the
actual choice of a procedure used to obtain exact solution.

An example, much studied recently is provided by the long-range interasting
invariant Haldane—Shastry spin chains. In this case the complete non-Abelian symmetry
is Y(sl,), the Yangian ofsl,. After taking an appropriate continuum limit, the space of
states of arsl,-invariant Haldane—Shastry spin chain is identified with the sum of level-1
irreducible highest weight modules of the affine Lie algelfa The Yangian symmetry
present in the finite-size model gives rise X@sl,)-action on each of the level-1 highest
weight modules [7]. Explicit expressions for the generators oftti, )-action on a highest
weight module ofsl, with n > 3 were obtained in [14]. R

An important problem is to obtain irreducible decomposition of a highest weight
module relative to this Yangian action. Each irreducible component gives an eigenspace
of the continuum limit of the Hamiltonian. Moreover, the decomposition may be used to
obtain novel character formulae for the highest weight module.

The Yangian decomposition in th& case was accomplished in [2]. To our knowledge,
untii now no complete result on the Yangian decomposition for> 3 has been
published. However, recently Kirilloet al [10] proposed a remarkable conjecture which
purports to describe the combinatorial structure of this decompositionslj-€haracters
and equivalence classes (up to certain exterigsl,)-automorphisms) of all irreducible
components. The distinctive feature of the conjecture is the prediction that all the irreducible
components are in the class of the so-call@ahe Y (sl,,)-modules parametrized by skew
Young diagrams of the border-strip type.

1 E-mail address: takemura@kurims.kyoto-u.ac.jp
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The main result of this paper is a proof of this conjecture. Actually we carry out the
proof in a more generaly-deformed, set-up. Instead of decomposing a level-1 highest-
weight module ofsl, with respect to the Yangiaki(sl,), we decompose a level-1 highest-
weight module oftU, (sl,) with respect to the level-0 action d!!é (sl,). The latter action
is a g-deformation of the Yangian. At generic values of the deformation parametiee
decomposition is combinatorially the same as for the Yangian case. We also remark that
for n = 2 the decomposition we obtain coincides with the previous result of [8]. For details
see section 4.3.

Let us now explain features of the method we use to prove the conjecture of [10].

The central role in our approach to the problem of the levél:0s(,) decomposition is
played by they-deformed Fock-space module Uf (sl,) taken in the semi-infinitg-wedge
realization due to Kashiwarat al [9].

In the papers [19] and [13] it was shown that #eleformed Fock space module of
the quantum affine algebr&,(s(,) admits an action of a new remarkable object - the
so-called quantum toroidal algebra introduced in [5] and [18] asdeformation of the
universal central extension of ths,-valued double-loop Lie algebra. The action of the
guantum toroidal algebra on tlgeFock space depends on two parameters: the deformation
parametery and an extra parametegr, when values of these parameters are taken to be
generic complex numbers, thieFock space is known to be irreducible with respect to this
action.

The quantum toroidal algebra has two subalgebl@;s(,?ln)“) and U;(?[,,)Q), both
isomorphic toU(; (sA[n). Accordingly, theg-Fock space admits tWU; (;[n)—actions.

The first of these actions has level 1, and coincides with the action originally introduced
by Hayashi in [6]. The irreducible decomposition of thd-ock space with respect to this
action was given in [9] by using the semi-infingewedge construction due to [15].

The second of thqu’(sl,,) actions has level 0, the irreducible decomposition of the
g-Fock space with respect to this action was constructed in [16] at generic values of the
parameterg and p. R

Kashiwaraet al [9] have shown, that the level-1 action bf (sl,,) on theg-Fock space
is centralized by the action of the Heisenberg algebra. In the paper [13] it was proven
that the proper ideal of the-Fock space generated by the negative-frequency part of the
Heisenberg algebra is invariant under the action of the quantum toroidal algebra provided
the value of the parameterin the latter is set to be equal to 1. The quotient of gAeock
space by this ideal is isomorphic to one of the irreducible level-1 highest weight modules of
U, (sl,). As a consequence, each of these modules admits an action of the quantum toroidal
algebra. R

The corresponding action of the subalgeU;;as[n)“) is irreducible, it is just the standard

level-1 action on the highest-weight irreducible moduld]g(?[,l). On the other hand, the
action of the subalgebré, (s1,)@ has level 0 and is completely reducible. The construction

of the irreducible decomposition of the Ieve[—fg(?[n)—moduleS relative to the level-0 action
is the problem which we address in this paper.

2. The actions of the quantum affine aIgebraUc’l(ﬁA[n)

2.1. Definition of the quantum affine algeblr/g(ﬁ,,)

Definition 1. The quantum affine algebré, (?[n) is the unital associative algebra over
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with generatorst;, F;, K (i e I :={0,1, ...
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,n—1}) and the following defining relations:

KK =1=K 'K, (2.1)
KiKj = K;K; (2.2)
K,EjK; ' =q“E; (2.3)
KiFK ' =q " F (2.4)
Ki— K1
[E:, F;] = &i; P (2.5)
1-a;;
> Ly [11"”} (E)E(E)Y =0 i#) (2.6)
r=0 q
1-a;
> [1‘,“”} (F) Fi(F)X ™" =0 i#] @7
r=0 q
where
9" —=q™" n]  [nlyln—=1],...[n—r+1],
e =g [r L T -1, 0, (2.8)
2 (i=)
aj =4 —1 (i —jl=1,G j)=Ln),(n1) n>3 (2.9)
0 (otherwise)
aij = 20 : ]). "=2 (2.10)
=23 #J) n=2.
The coproductA is given by
AE)=E ®K +1®E; (2.11)
A(F)=F®1+K '®F (2.12)
AK) =K; ® K;. (2.13)

We putc’ := KoK;...K,_1 in U;(sA[,,), thenc’ is the central ir‘Ué(?[,,).

2.2. g-wedge product and semi-infinite gq-wedge product

The affine Hecke algebra of typs,, Hy(q)
with generatorg;*, v, i =12,....N -1

LTt =T17'T;=1
LiTiaT: = Ti1aTiTi 1

is a unital associative algebra ov€fg*']
,j=12,..., N and relations

(T, + (T, —¢*) =0

T,T, =TT if|j—il>1
VY, =YY,  TTWT T =q"Yn
Y,T; = T;Y, if j#£i,i+1

The subalgebrddy (¢) generated b)Tl.il is isomorphic to the Hecke algebra of typh,.

Let p € C* and consider the following operators in Efifizi?, ..., zx'])
-1
q Yz —qz; .
gij=———2(Kij;—D+gq I1<i#j<N
Zi —Z%j
v = gitaKiiv1 - g nKinp” Kvigri. . Ki—1igiv i=12...,N
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whereK; ; acts onC[z;?, ..., z5'] by permuting variables;, z; and p” is the difference
operator
PP f e, i zan) = f@L o, P2y TN) feClzt ... 1.

Then the assignment

C
T Ti = —qgi s Yi > gt Ny (2.14)
defines a right action ofiy(¢) on C[zEY, ..., Y.
The commuting difference operators”’, ..., Y\ are called Cherednik’s operators.
Moreover, the assignment
C
Ti>Ti=—qg; i1, Y; > z; (multiplication) (2.15)
defines another right action @fy(¢) on C[z¥, ..., z1.

Remark. The actions Of—qg;l.lﬂ, qlfNYl(N), zi‘l are related to the toroidal Hecke algebra

l

[18] or the double affine Hecke algebra [4].

Let V = C", with basis{vs, ..., v,}. Then®"V admits a leftHy (¢)-action given by

LT =19 9T 1" whereT € End®@?V) (2.16)
and
q%ve, ® v, if e1=¢€
%(vfl ® Ve,) = | 9V, © Vey if e1 < e (2.17)
qVe; ® Ve, + (g% — Dvg, ® v, if €1 > €.

Let V(z) = C[z*] ® V, with basis{z" ® v}, m € Z, € € {1,2, ..., n}. Often it will
be convenient to sét = € — nm andu; = 7" @ v.. Then{u}, k € Z is a basis ofV (7).
In what follows we will writez"v, as a short-hand far” ® v., and use both notations;
andz™ v, switching between them according to convenience. The two actions of the Hecke

algebra are naturally extended on the tensor proﬂl[lcfl, ...,zf,l] ® (®VV) so thatT;

acts trivially on®" v andT; acts trivially onC[z;?, ..., z5Y. The vector spac®” V (z)
is identified withC[z7?, ..., z3'] ® (®" V) and theg-wedge product [9] is defined as the
following quotient space:

N-1 c K
ANV (z) = ®NV(z)/ Z Ker(T; + ¢*(T;)™ Y. (2.18)
i=1
Let A : ®VV(z) = AV (z) be the quotient map specified by (2.18). The image of a
pure tensot, ® u, ® - - - ® ug, under this map is called a wedge and is denoted by

Upg AUy N oo ANy = ANUg, Q g, @ -+ - @ Uy, ). (2.19)

A wedge is normally ordered it; > k, > --- > ky. In [9] it is proven that normally
ordered wedges form a basis ' V (z).

Let us now define the semi-infinitewedge produch z V (z) and for any integeM its
subspaceFy,, following [9].
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Let®72 V(z) be the space spanned by the vectqg@ U,®..., kiya=ki—1,i > 1).
We define the space? V(z) as the quotient o®z V (z):

AZV(Z) =®7 V(z)/ZKer(i +qATH™Y. (2.20)
i=1

Let A : ®7ZV(z) — AZV(z) be the quotient map specified by (2.20). The image of a pure

tensoruy, ® ux, ® ... under this map is called a semi-infinite wedge and is denoted by
Uy AUy Ao i= AUy @ U, @ -+ +). (221)

A semi-infinite wedge is normally ordered&f > k, > --- andk; 1 = k; — 1( > 1). In

[9] it is proven that normally ordered semi-infinite wedges form a basis 71V (z).

Let Uy be the subspace abz V(z) spanned by the vectons,, ® ug, ® ..., ki =
M—-i+1i> 1. Let Fy be the quotient space df,, defined by the map (2.21).
Then Fy, is a subspace ofz V(z), and the Vectorsi, A ug, A ..., (k1 > ko > ...,
ki =M —i+1i> 1) form a basis ofF,,. We will call the spaceF), the ¢g-deformed
Fock space.

2.3. Actions of the quantum affine algebra on the gq-wedge product

We will define two actions OU(; (;[n) on the space\"V(z).
The first one is defined as follows.

Ei(m®v) = Zm ®E/KL, . Ky (2.22)

Fi(m ®v) = Zm ® (KD™ .. (KT E™y (2.23)
j=1

K,-(m®v)=m®](il(£ K i=212..,n-1 (2.24)

Eo(m ® v) = ZmY ® EIKY,, .. KJv (2.25)

Fo(m ® v) = Zmyj ® (KD (KY ) EM (2.26)
j=1

Ko = (K1K>... anl)il. (2.27)

Here Ej”‘ = 19" @ E* @ 18" where Ei'* € End(V) is the matrix unit in the basis
i pitLitl N
VL, ..., Uy, and K =g KP = (K}K?... K!™H™

We will denote this action b\]](N). Note that it is well defined on the quotient space
ANV () in view of the relations of the affine Hecke algebra.
The second one is defined as follows.

Eo(m @ v) = Zmzj ® E" ! ]+1 K,(\),v (2.28)

Fo(m ® v) = Zmz*l ® (KD (K) ) EM" . (2.29)
The actions of other generators are the same as in (2.22)—(2.24), (2.27).
We will denote this action by/\"’. Again, this action is well defined on the quotient
spaceA™ V(z) in view of the relations of the affine Hecke algebra.
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2.4. Level-0 action of the quantum affine algebra on the g-deformed Fock space

We will define a level-0 action ot/ (?[n) on Fy (M € Z) following the paper [16, 13].

Lete:= (€1, €2, ...,€yx) Wheree; € {1, 2,...,n}. For a sequence we set
Ve '= Vg, Q@ Ve, ® -+ Vg, (e @NCM). (2.30)
A sequencen = (mq, mo, ..., my) from Z is calledn-strict if it contains no more than

n equal elements of any given value. Let us define the A¢fsand £(m) by
NVi={m=(my,my, ... ,my)€ ZNim1 < mp < - < my, m is n-strict} (2.31)

and form € M,

Em) ={e=(er,€2,....,en) €{L,2,....0}"]e; > €11 Vi st.m; =miy1). (2.32)

In these notations the set

{wim, e) == AZ™ @ ve) = 7"V, A"V, A A0, M € MY, e € E(m)} (2.33)

is nothing but the base of the normally ordered wedgesNiv (z). We will use the notation
w(m, e) exclusivelyfor normally ordered wedges.

Similarly for a semi-infinite wedg® = uy, Aug, A ... = 2", A0, A. .., SUCh that
w € Fy, the semi-infinite sequences = (m1, my,...) ande = (€1, €2, ...) are defined
by ki = ¢; —nm;, ¢, € {1,2,...,n}, m; € Z. In particular them- and e- sequences of the

vacuum vector inFy, will be denoted bym® ande®:
0 0 0
MY =upy ANup_1 ANpy_oA...= zm1v€<1) A zmzveg A z’"3v€g A (2.34)

The Fock spacé ), is Zo-graded. For any semi-infinite wedge= u;, Au, A ... =
Z"ve, A 2", A ... € Fiy the degregw| is defined by
izl
Let us denote byFf, C Fy the homogeneous component of degkee
We will define a level-0 action oU,; (sl,) on the Fock spacé’), in such a way that
each homogeneous componeﬁj@; will be invariant with respect to this action. Throughout

this section we fix an intege¥ ands € {0, 1, 2, ...,n — 1} such thatM = s modn.
Let ! be a non-negative integer and defiig™ c A"V (z) as follows:
Vil = b Cw(m, e). (2.36)
meMy,,,.ee€(m)
My <m®,

The vector spac¥;,™ has a grading similar to the grading of the Fock spBge In this
case the degreev| of awedgew = ug, Aug, A. . .Autg,,,, = 2" Ve A2V AL AZY €
vy is defined by

s+nl

|w|:Zm?—mi. (2.37)
i=1

s+nl

The degree is a non-negative integer, andferZ, we denote by&/[fj”l'k the homogeneous
component of degrek.
The following result is contained in the paper [16]:

Proposition 1.For eachk € Z-, the homogeneous componeW bk e Aty (2) s
invariant under thd// (sl,)-action Us™*"" defined in section 2.3.
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We havep,"* (w)| = |w| and hence,"* : v — Fk for all k € Z-o. In the paper

[13] the following propositions are shown.

Proposition 2.When! > k the mapﬁf‘“‘ is an isomorphism of vector spaces.

Proposition 3.For each triple of non-negative integdrd, m such that </ < m the map
bk ysinbk _ystimk - defined for anyw e Vi, by

I,m
ﬁ%;,k(w) =WAUM—s—nl NUM—s—nl-1 /N o NUM—s—nm+1 (238)
is an isomorphism of thé/; (sl,)-modules.
We define on the vector spadd, a level-0 action 011];(5’1\[,1) by using propositions 2
and 3.
Definition 2. The vector space“n"l is a level-0 module qu’ (;[,,) with the actionU, defined
by
Up = pMHuSphh wherel > k. (2.39)
This definition does not depend on the choicd ak long ad is greater or equal té.
Since we have
Fu=@DFy (2.40)
k>0
the level-0 action/y extends to the entire Fock spagg.

2.5. Level-1 action of the quantum affine algebra on the g-deformed Fock space

In this section we review the level-1 action bf (?[n) on the Fock spacé), [9].
First we define the action dﬁ; (?[n) (generated byE;, F;, K;,i =0,...,n—1) on the
vector|M’) as follows.

E/ M)y =0 (2.41)
Uppsrl ANUpp—1 ANUpp—2 A ... if i = M’ modn
FMy = | Mo a2 _ (2.42)
0 otherwise
, q|M") if i = M’ modn
KiIM') = , . (2.43)
|M") otherwise.
For every element € F);, there existsV such that
v=0v™ A M = N) v™ e ANV (2). (2.44)
We define the actions of;, F;, K;,i =0, ...,n — 1 on the vectow as follows.
Eiv:= Ev™ AK;IM —N)+v™ A E;|M — N) (2.45)
Fv:=Fo™M A M~ N)+ K™ A FEM— N) (2.46)
Kiv:= Ko™ A K;|M — N). (2.47)

The actions ofE;, F;,K;, i = 0,...,n — 1 onv™ are determined in section 2.3. The
definition of the actions om does not depend oN and is well defined, and we can easily
check that theUé (sl,)-module defined in this section is level-1. We will use the notation

U, for this U; (?[,,)-action on the Fock space.

Remark.The two actiond/y andU; appear as the representations of the subalgebras of the
guantum toroidal algebra. For details, see [13].
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2.6. Thep = 1 case

In the paper [9] it was demonstrated that the Fock spEgeadmits an action of the
Heisenberg algebr& which commutes with the level-1 actid, of the algebraU, (sl,).
The Heisenberg algebra is a unitatalgebra generated by elementsBl with a € Zo
which are subject to relations

2na
[Bas Bb] = 8a+b,0a

_q2a'

1 (2.48)

The Fock spacé’, is an H-module with the action of the generators given by [9]

B, = izf. (2.49)

i=1

Let C[H-] be the Fock space off, i.e. C[H_] = C[B-1, B_»,...,]. The element
B_,(a = 1,2,...) acts onC[H_] by multiplication. The action ofB,(a = 1,2,...) is
given by (2.48) together with the relation

B,-1=0 fora > 1. (2.50)

Let A;(i € {0,1,...,n —1}) be the fundamental weights eAtjn and letV(A;) be the
irreducible (level-1) highest weight module Ufz(s[n) with highest weight vecto¥,, and
highest weighta;.

The following results are proven in [9]. R

e The action of the Heisenberg algebra By and the actiori/; of UL; (sl,) commute.

e There is an isomorphism

iy Fy = V(A) ® C[H_] (M =i modn) (2.51)

of U;(E[n) ® H-modules normalized so thaf; (|1M)) = V(A;) ® 1.

In general the level-@/; (sA[,,)-action Uyp does not commute with the Heisenberg algebra.
However, if we choose the parameteiin Uy in a special way, thel/y commute with the
negative frequency part df. Precisely, we have the following proposition, proved in [13].

Proposition 4.At p = 1 we have
[Uo, H.] =0. (2.52)

Let H be the non-unital subalgebra i generated byB_;, B_,, .... Proposition 4
allows us to define a IeveI-U;(stn)-moduIe structure on the irreducible level-1 module
V(A)(G €{0,1,...,n—1}). Indeed from this proposition it follows that the subspace

H' Fy C Fy (2.53)

is invariant with respect to the actidiy at p = 1 and therefore a level-0 action OT(;(;[n)
is defined on the quotient space

Fu/(H Fy) (2.54)

which in view of (2.51) is isomorphic t& (A;) with i = M modn.
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Figure 1. . = (4,4,2,2,1), n = (3,1, 1).

3. Skew Young diagrams and the level-0 representations c[ﬂ'{l(s/[;)

3.1. Skew Young diagrams

Let us recall, following the book [12], the definitions of the skew (Young) diagrams, their
semi-standard tableaux (SST) and the associated skew Schur functions.

Let A, u be partitions i.e. sequences of non-negative integers. We assurpeyu;
for all possiblei, and if u; < i < A; then we draw a square whose edges are
(i—-1,j-1),G-1,j),(@ j)and(i, j—1). (For example, see figure 1.) This diagram is
called a skew (Young) diagram and is denoted.dsu. We define the degree of the skew
Young diagrami \ w as|a\ ul = >, (A — w;).

A skew diagram is called a border strip if it is connected and contains @ blocks
of boxes. Let(m1, ..., m,) denote the border strip af columns such that the length &h
column (from the right) isn; (figure 1).

A SST of the skew diagrarh \ u is obtained by inscribing integers 2, ..., n in each
square of the skew diagram. The rule of the SST is as follows. The numbers are strictly
increasing along the column and weakly increasing along the row. For eacl S&T
n;(T) be the multiplicity ofi in T.

Definition 3. For each skew diagram \ u, the skew Schur function,,, is defined as
follows

T T T
s (2) = ZZ?( )ZZZ( ) ZVlNN( ) (3.1)
T

Here the summation is over the set of SST of the skew diagram.

3.2. The level-0 representations @f (?[,1) associated with the skew diagrams

Fix a skew diagram.\ .« of the border-strip type and degrée We put a numbefl, ..., N)
on each box such that if> k thenx; > x; or (x; = x; andy; > y;), where(x, y) is a box
contained in the skew diagram, and set= —2x; + 2y, + a (a is fixed) (figure 2).

On the space&®” V, we define the evaluation actiorf") , of U/ (sl,)

~~~~~ a

N
a\M (ED =Y EFKL K (3.2)
j=1
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. 5/
yl | a—4
v

a+2 a |la—2

5N.i.,aN<F)—Z(K1> LK) (3.3)
=1

T ay (Ki) —Jklk2 Ky  (=12...n-1 (3.4)

75y (E0) —Zq“'E" K2, K (3.5)

5 o (F0) —Zq YK (KD)TE (3.6)
j=1

o oy (Ko) = J<n“Y?“, o (K1K2 - K1) 7 3.7)

and on the same space, we consider the following operators:

i}—Si‘j v XSiT];L—S,'J
Rijx)=——73—""hij Rijx)=—"—3 (3.8)
whereP,-,j(u-®i)®-~-®zj}®~-~):-~-®{)®~-~®IJ)®~--. We define

Ry = l_[ R j(g“ ™) (3.9)
1<i<j<N

Ry= [[ Rut@™ (3.10)
1<i<j<N

Iéx\u = l—[ ]EN+i—j,N+i—j+1(qai7aj) (3.11)
1<i<j<N

where (i, j) is on the right to(i’, j’) in the product ifi < i’ or (j < j' andi =i’). As a
special case of [3] proposition 1.5, we have the following proposition.

Proposition 5 ([3]). The subspace IR, (@¥V)(= ImR;,,(®"V)) with the action
AAAAA o is an irreducible U/ (sl,)-module, and the mapR;,.: ™ . ®"V/ Ker

.....

R,\\,L) =@M . e"V/ Ker Rnu) — (@M . Im R;\,.) is an isomorphism of the
Uq(sl )-modules.
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Remark.In [3], this proposition is proved in the, (gT[,,)-moduIe case and the normalizations

of ¢ andx are different. The irreducibility as thﬁ;(?[n)-module follows from the result
of [1].

3.3. Character formulae

Let A;(i = 1,...,n — 1) be the fundamental weights ef, and lete; = A; — A,_1(i =
1,....n) with Ag = A, :=0.

The subalgebra dT/;(s[n) generated by, F;, Kii(i =1,...n—1) is isomorphic to the
algebral, (sl,,). In the paper [10] thel,-character of the irreduciblE (s(,)-representation
associated with a skew diagram was shown to be given by the corresponding skew Schur
function. This result is immediately generalized to theleformed situation. Precisely we
have the following proposition.

Proposition 6.[10]. The skew Schur functios,, (z) wherez; = e is equal to theJ, (sl,)-
character of the irreducibl&/; (s,)-module described by proposition 5.

As a corollary we obtain the following.

Corollary 1. The dimension of the space IRy, C (®"V) is equal to the total number of
the SST of the skew diagram\ .

Let V(Ay) be the level-1 irreducible module aifq(;[n) whose highest weight is the
kth fundamental weight\; of Zl; We set cliV (Ay) = Y-, ,(dimV, ;)e*q’, whereV,
is the weight subspace with, (s(,)-weight A and homogeneous degrée The following
proposition is proved in [10].

Proposition 7. [10] Settingz; = ¢ we have

ch(V(Ay) = g & "5 Y gElleeb O, o) (3.12)

0eBS
|0|=k modn

where BS is the set of all the border strigb= (my,...,m,) andt(®) = Zf;f(r —m;
with m, < n.

Note that ifm; > n for somei, then the skew Schur functiop is equal to 0, moreover,
l

for the border strip of the fory, = (my, ..., m,,n,...n) the numbe%|9,|(n— 16;)+1(6))
does not depend oh

4. Non-symmetric Macdonald polynomials and the decomposition

4.1. Non-symmetric Macdonald polynomials

We will define the non-symmetric Macdonald polynomials as the joint eigenfunctions of the

Cherednik's operatorg " (i = 1,..., N) [17, 16]. It will be convenient for our purposes
to label these polynomials by the set of paits o) which we now describe.
Let My be the a set of all nhon-decreasing sequences of intégergiy, Ao, ..., Ay)

and Iet/\?l;’V be the subset affy which consists of alk-strict non-decreasing sequences
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(cf section 2.4). For each € My we set|A| := YN A;. Fori,u € My such that
M| = |u| we define the dominance (partial) ordering:

AEpe Y a =Y i efl2,... N). (4.1)
j=1 j=1

Let $* C Gy be the set of elemenis such that ifA,;, = As(;) ando (i) < o(j) then
i < j. We define the total ordering a$t:

o > o' & the last non-zero element 6f, ) — Aorg))ly iS < O. (4.2)

Then the following properties are satisfied. (In what follows #h@, i + 1) denotes the
composition ofo and a transpositioy, i + 1).)

(@) $* has the unique minimal element with respect to the ordering (4.2). We denote
this element by min. Note that the one we want hag;) < Aming+ny G =1,..., N —1).

(b) S* is connected, i.e. for any < S*, there existi, ...,i, such that if we put
o, =0(i1,i1+1)...G, i +1) theno, =min,0; € $*, 0y = oyl =1, ..., 7).

(c) Supposer € S*, theno (i,i +1) € $* & Ao() # Ao(ir1)-

(d) If )\[7(,') > )\0(,'4_1) ando € S* theno > o(i,i+ 1)

We define the partial ordering of the gk, 0)|A € My, o € S*}:

-~ ~ A=A
(A,0) > (A, 0) & [A| =|A| and - . (4.3)
A=Ao >0
Theny,™ act triangularly onC[z;?, .. ., z5'] with respect to this ordering [17]:
Yy = "g‘}‘(a)zAH + ‘lower terms’ (4.4)
£l (o) = provg¥O-N-L (o € Y. (4.5)

2 oy
Z, 2z ™ with

"( 1

In the above notation, we identify the ordering of monomigls:= z;
the ordering on the set of pairfg, o).
For genericq and p the pair (A, o) is uniquely determined from the ordered set

(££(0), £3(0), ... &4 (0)):
(,0) # (1,5) & (E0),60), ... £(0) # 1), @) ... £,(@)). (4.6)
Therefore one can simultaneously diagonalize the opera‘;@?s{l <i <N).

YV @k (2) = (o) (2) @ (z) = 7" + ‘lower terms. (4.7)

The Laurent polynomia®? (z) is known as the non-symmetric Macdonald polynomial.
The action ofg; ;1 on the non-symmetric Macdonald polynomial is as follows [17].

84195 (2) = A (0) P} (2) + Bi(0) 111 (2) (4.8)
(g —qg Hx 9 x) Aoy > Ao(+1)
Ai(a) = % Bi(U) = 0 ()"G(i) = )"U(i+1)) (49)
q" (Aot < Aoti+1)
B Pl : Ez+1(0)
{x}:= 12 x: Py (4.10)

The casep = 1 is not generic. However, from the results of [11] it follows that the
coefficients of®* (z) have no poles ap = 1. Therefore the non-symmetric Macdonald
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polynomials @2 (z) are still well defined ap = 1 and the formulae (4.7)—(4.10) are still
satisfied.

In what follows we will let &)?,(z) denote the non-symmetric Macdonald polynomial
at p = 1. In virtue of the triangularity (4.4) the non-symmetric Macdonald polynomials

®%(2)(A € My, o € §*) form a base ofC[z;?, ..., zEY. We put
E" = P Cd)(2). (4.11)
oes*
ThenClz;?, ..., 251 = @, E*. In section 4.2 we will use the following lemma.

Lemmallete =3, . _. yZnt...2, . Suppose that € My satisfiesi; — ;.1 =
0 or 1. Then we have

ek ®L(z) = BL(2). (4.12)

Here X = Oty ooy ANais ey vz — L, ... Ay — 1) and c(e S*, §%) is the minimal
element ofS*.

Proof. By the triangularity of the non-symmetric Macdonald polynomial (4.4), we have

e_qu)};(Z) = €_i (ZAC + Z CM,(TZM”> = ng + Z C;/,,UZMH
H<A,0ESH (1,0)<(,6)
=@+ Y, ¢ ,P@). (4.13)

(1.0)<(,5)

At p =1, the operatoryi(N ) commute with symmetric Laurent polynomials considered as
multiplication operators oft[z3, ..., zi']. Hence we have
Ve @L(2) = e YV DL() = ¢V e 0L (2). (4.14)

The ordered set of eigenvalugg®©~N-1}¥  determines the element € S* uniquely.
Hence (4.13) and (4.14) lead to

e ®(x) = BE2) + Y el D). (4.15)

w<A

Now let us consider any. which appears in the sum (4.15). If there exists N — k)
such thatu; < A; then forj > i we necessarily have; < A; because of the assumption
X —Xiy1 =0 or 1 and the fact that; < A; implies u; < u;, which follows sinces € S*.
However,u; < A;(j > i) leads to[A| > |u| which is in contradiction withu < A. Thus
we haveu; > A;(i < N —k). If u; > A; for somei, then necessarilyy % X which is
again a contradiction. Hence we obtain = 1;(i < N — k). By the conditionx < A,
we haveuy_x = Ay_x. Because of the assumption arand the fact that; < A; implies
Wi < wj, we obtainu; < Xj(j > N — k). Combining this with|1| = |«| we conclude that
j = A;Vj. That is the second term in the r.h.s. of (4.15) is zero. O
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4.2. The decomposition

Let us consider the quotient spakg/H’' F), and for eactk > 0 its subspac&},/(H' Fy N
FX).

It is straightforward to establish the necessary and sufficient condition for the vector
w=3, P ®vie Clzzh ..., 73] ® (®"V)) to be equivalent to 0 in the
quotient space\" V (z). The result is

A D 2(0(i)—o(i+1 A
wg(i,i+1) = —Riiw1(q (o@-ott )))I/fg Vo S.t. dog) > Ao+l

Vi —2¢-1 Py
(q Si.,i+l — Si,i+l)wo‘ =0 Vo s.t. )\g(i) = )"a(i-&-l)

(4.16)

where R,»Hl(x) is defined in (3.8). In view of the properties of the 2t in the space
ANV (z) we have

&)2 @) ® Vo ~ &)?nin(z) ® IéihirJrl(q?(m(i,+1)—<7,~(l}))) o I\éil,ilJrl(qz(gl(il+l)_ql(il)))WJ~ (4'17)

Here we used the notations of section 4.1.
By the triangularity of the non-symmetric Macdonald polynomial (4.4) and the relation
(4.17), we obtain

Vit = E ® @V V)/2n (B @ (@ V)

s
= P@hin) @ @"V))/ Q2N (Phin(2) ® (@"V)) (4.18)
A

where the summation is ovére M’ such that.y < m?,,,, [m® — A™"| = k.

Proposition 8.Define the setM” , as
ME = e M da <m2, ., Im® — A™" =k andA; — A1 = 0 or 1. (4.19)

Every vector from the linear spacE,{;/(H/_FM N F}\}) can be expressed as a linear
combination of vectors of the form(®%;,(z) ® ¥*)|IM — s — nk), wherer € M5,
andy? e @V V.

Proof. By the equation (4.18) it is sufficient to show that®:. () ® ¥*)|M — s —
k) in M inp, 2 < mP,,,, Im® — A" = &, y* € ®" V) is equivalent to 0 in the space
FY/(H FyNF}) unlessh; —A.q=0o0r1foralli=1,...,N—1. We wil prove this
by induction with respect to the ordering of the set,.,.. (Note that ifA is notn-strict
then A(d%,(2) ® ¥*) = 0.)

Sincei; — 211 # 0,1 implies that(hq, ..., A; — 1, A; 01+ 1, ...) is lower with respect
to the ordering of/\3l‘y+nk, the minimal element satisfies the condition of proposition 8.

Fix A and assume that the proposition is proved foralsuch thaty < A. Define
X € M, as follows:

A =Dip1 & ki =hin (4.20)
A=At (4.21)
)in #* )in_;,_]_ = )in = 5\.1‘4'_1 + 1. (422)

For each~ positive integdr, definen; = #{i|; — A; = I}. If n, = 0 for all /(> 1) then
either A(®*. (2) ® ¥*)|M — s — nk) itself satisfies the condition of proposition 8, or else

min
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the elemen{],., B”, - A(&D;’},in(z) ®Y1)|M —s —nk) is in H' Fy N Fy,. Expanding the last
element, in the spacgy,/(H' Fy N F,) we obtain

ANPhin(@) @ YHIM —s —nk) + > APL(R) @ YL)|M —s —nk) ~ 0 (4.23)

n<A,0€SH

for somey”. By (4.17) and the induction assumption the proposition is proven. O

n,k

Proposition 9.For eachi € Ms;nk, defineJ andr; such thath; = --- = A,, > A, 41 =
v = Apytra > 00 2 Amtetr=n), then in the spacey,/(H' Fy N Fj,), for each
¥ € ®"V we have

AN@pin(@) ® Riir1(@)W)IM —s —nk) ~0  (hming) = Aming+1) (4.24)
/\<&>?nin(z) ® 1_[ le+a,lj+rj+rj+1—b(q_z(a+h))1/f> ‘M —s—nk)~0 (4.25)

where (a, b) is on the right to(a’, ") in the product ifa < a’ or (@ = o’ andb < b'),
I, =Y/ }r; andlp = 0.

Proof. The first relation follows from (4.16) and the identity

Im (425,',_,‘%..1 = Siiv1) = Ker(qus,]il — Sii+1)- (4.26)
Consider the second relation. We define

A= (A1 Aty Marpatotr 1 Ay D). (4.27)

By lemma 1, the definition of the spad&,/(H’ Fy N F§,) and the relation (6.51) in [13],
we obtain

FB_1, oo Boryairy) - A Ppin(2) @ Y)IM — s — nk)
= (F(B_1... . Borpiry) - AN Pin(@) @ WM — 5 — nk)

= A (PL(2) ®Y)IM — s — nk) ~ 0. (4.28)
Here f(x1, ..., x;) is a polynomial such that
N N N
f(ZZl‘,ZZiZ,...,ZZ§>: Z Z,‘l...Z,‘[ (429)
i=1 i=1 i=1 i1<...<i]

and¢ € S* is the minimal element of*.
If we apply the formula (4.17), we obtain

/\(&)?nin(z) ® 1_[ Iélj+rj+1—b+a,l]+r/+1—b+a+1(q72(a+b+l))Ip)|M —s—nk)~0 (4-30)
0<a<rj—1
Ogbgr/url—l
where(a, b) on the right to(a’, ') in the product ife < a’ or (@ = a’ andb < b’). Finally,
taking into account the relation

o —2(a+b+1)
1_[ Rl,+rj+1—b+a,lj+rj+1—b+a+1(q ) H Plj+c¢,l,+rj+r,+1—b

0<a<rj—1 1<a<r;
0<b<rjpn—1 Osh<rjt

= 1_[ Rl_,Jra,l_,err_,err_,Hfb(in(aij)) (431)

1<a<r;

0<b<rj -1
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we obtain (4.25). O

With notations of proposition 9, for eache /\?lfjfnk define the linear subspace ®f' V

1
V= Z Im R; ;+1(¢%) + Z Im ( H R1j+a,lj+rj+fj+1—b(q_Z(a+h)))- (4.32)

j 1§a<r/-

1<h<rjyg-1

)\min(i):)\min(i+1| j=1

By proposition 9, we obtain the following.
Proposition 10.Consider the map
Vi P Phin(@) ® (@ TV/ V) — Fy/(H Fy N Fyp)
e, (4.33)
v VA M —s —nk).
Define the action qu’(?[n) on the L.h.s. of (4.33) by (2.22)—(2.27).
Then the mapy, is well defined, surjective and islaq’(ﬁn)—intertwiner.

Proposition 11.Let A € M;’;fnk(:,v). For any such. we defineJ, r; and/; in the same way
as in proposition 9. Le# be the border strip characterized by, r;_1,...,r1). We have
@"V/Vt=@NV/KerR,. (4.34)

Proof. First we will show thatoV V/V* > @V V/KerR,. Applying repeatedly the Yang—
Baxter equationR, ,(x) R, c(xy)Rp.c(¥) = Rp(¥)R,(xy)R,5(x), We can move some
special elements to the right in the product

Re = ...Ri+1,,-(q72) ... l—[ Rl/-+r/-+a,l/+rj—b(qZ(aer)) (4-35)
1<a<rja
0<b<rj—1

where (a, b) on the right to(a’, ') in the product ifa < @’ or (@ = @’ andb < b’), and
Amin(i) = )hmin(i+l)- By the formula

(x—g)(xqg2-1),
TP = id (4.36)

Rpo(X)Ryp(x™H) =

we obtain@V v/ V* 5> @V V/KerR,y.

Next we will show that®VV/V* c @V V/KerR,. We show that the vector®? v,
such thate; < ;1 if AminG) = AminG+1), € 2 €+l if AminG) 7 AminG+1) Span the space
NV V.

Using the relationsR; ;+1(¢*)(®" v,,) ~ O(kmin@y = Amin@+1) We find that the set
of vectors {®Y ,v.,| if Amingy = Aming+1 thene; < e;11} spans the spac@™V/V*.
For each vector of the forn&?\’zlvei we define]\7(®i:1v€‘.) =#(, )i < j, e > ¢ and
Amin) 7 Amin(j)}. Consider the vectog{\’zlvel such that ifAmin ) = Amin+1) thene; < e;ya.
Assume that there is ansuch thate; < e; 11 (if Aming) # Aming+1), then we obtain the
relation

[T  Rivassrsna-s@ ) @Vv,) ~ 0 (4.37)
lgagrj
1<b<rja—1
for all possiblej. By (4.37), the vecto®"v,, is equivalent to a linear combination of
the vectors®™v,, such thatV(®"v.,) < N(®"v,,). Becausex™v,, is invariant by the
relationsR; i+1(¢®) (@Y v,,) ([ +1 < i’ <ly1—1111+1 < i’ <ljp—1), if we use these
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relations we obtain that the vect@™ v, (¢; < e;i11 if Aming) = Aming+1)) IS expressed by
the sum of@"v,, such thatV (®"v,,) < N(@"v,,) ande;: < ey 1 (if Aminry 7 Aming+1)-
By the induction onN we find that the vector®™v,, (e; < €1 if Amini) = Amingi+1)s
ei = eiy1 if Aming) # Aming+1) Span the space™ v/ Vv*.
The number of these vectors is equal to the number of SSI. A&y corollary 1, we
obtain®@"¥V/V* c @ V/KerR,. O

In what follows we identify the border stripg:1, ..., m,) and(mq, ..., m,,n, ..., n),
n

and identify(Aq, ..., Ayp) @and (A1 + 1, ..., A1+ 1, Mg, ..., Asnx) Which are elements of
[ 1, M2E . Proposition 11 gives a one-to-one correspondendd oM, and the set of
all skew Young diagrams of the border-strip tyfme,, . . ., m,) which satisfym; < n for all
iand) ;_;m; =s modn. On this correspondence the degree of the semi-infinite wedge
A@hi(2) @ Y)IM — s — nk) is equal tol — 20+ Lig|(n —|0]) + 1(9), whered is
the border strip which corresponds xcandz(9) = Zf;ll(r —im;.

We define claFy/H' Fy) = Zm dim(V,.)e*q", where V,; is the subspace of
Fyu/H' Fy of the degree (2.37) and of theU, (sl,)-weight . We put)_, ; a,ie"q" <
> uibuietq' iff a,; <b,; forall u andi. By proposition 10 we have

Ch(Fy/H Fy) < g5 Y qullo-ha@g, ), (4.38)
0eBS
|6|=k modn

Fy/H' Fy with Usp-action is isomorphic td/ (Ay), this isomorphism is degree preserving
with respect to the degree (2.37) 6, /H' F); and the homogeneous degreelofn ) and

the character formula df (A;) is given in proposition 7. Hence the inequality of (4.38) is,

in fact, an equality and, therefore, the map (4.33) must is bijective. Thus have the following
theorem.

Theorem 12We have the isomorphism (ﬁq’ (?[,,)-modules:
Fy/H' Fy =~ @ Vo (4.39)
6

where the sum is over all border stripgy, ...m,), (m; <n, m, <n andN = M mod
n), the spaceV, and the level-QU; (sl,)-action is defined by (V) Ry - ®VV) where

ag,....ay’
ji—1

N=Y'_m andaHer:j m =201 —1+ Zle m;).

4.3. s, case

In this section we will discuss the, case in a somewhat more detail.
Let W, be the(n + 1)-dimensional irreducible module df,(sl>), and W, (b) be the
evaluation module with the parametewhoseU, (sl2)-module structure is given by

Eo=q¢"F, Fo=q "E; Ko= K™% (4.40)

It is known that every finite-dimensional irreducibl[g(](glg)-module is isomorphic to
®u Wy, (b,) for somen, andb,. We will represent thé/; (s?[z)—module described by a skew
Young diagram as the tensor product of the fagpW, , (b,.).

Proposition 13.Let ¢ be the skew Young diagram of border stfips, ..., m,) such that
m; =1or2, andN = >"_; m;, Ay m =20—1+ Z{;llm,-). We put/ = {ijm; =1
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andm;_1 = 2} = {l1,1o, ..., 1, }(mo = 2,1; < l;4+1) and letn; be the integer such that
my =...=Mjp-1= 1, My yp, = 2andb; =2; +n; — 3.

The U, (sl2)-module(zY) . Ry - ®NC?) is isomorphic toW,, (b1) @ W,,(b2) ® - - ®
Wn,/ (br/)-

Proof. By proposition 5, we find that(z!™ , . R, - ® C?) is isomorphic to
@M @VC?/KerRy).

As in the proof of proposition 11, we obtain IR),;;1(¢?) C KerRy if ajp1 = a; — 2
and ImR; ;,1(¢~2 C KerRy if a1 = a; + 2.

We can directly confirm that thé’é(?[z)-module(na,a_z, C2® C2/Im Ry 2(¢?) is one-

.....

to Wi(a +1 — 1), where(l) is the Young diagram of degréewhich has only one row.
If we put

V=Y MR+ Y. IMRi@ ) (4.41)

ilajy1=a;+2 ilajy1=a;—2

.....

Since the dimension of,,,(b1) ® Wy,(b2) ® - -- @ W,,, (b) is equal to the dimension
®N(C?/Ker Ry the proof is finished. O

By proposition 13, we can rewrite the decomposition (4.39)sfigrcase. In fact we
obtain the same decomposition as [8]. More precisely we obtain:

Proposition 14.1f we change the coproduct of the Ievelég(sAlz)—module defined in [8] to
fit our coproduct (2.11)—(2.13), the Ieveléqj(sAlz)-module of V(Ay,) s =Mmod2,s =0

or 1) defined in [8] is isomorphic to the IeveHID;(sAlz)—module of V(Ay) defined in this
paper, and the degree is preserved under this isomorphism.
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